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Graphing Departures from Normality



Marine Reserves

Marine reserves are becoming increasingly popular for biological conservation and
the protection of fisheries. But are reserves effective in preserving marine wildlife?

Halpern (2003) matched each of 32 marine reserves to a control location, which was
either the site of the reserve before it became protected or a similar unprotected
site nearby. One index of protection evaluated by the site was the “biomass ratio,”
which is the total mass of all marine plants and animals per unit area of reserve
divided by the same quantity in the unprotected control. This biomass ratio would
equal one if protection had no effect. The biomass ratio would be > 1 if the
protection were beneficial, and it would be < 1 if protection reduced biomass. Are
marine reserves effective?

H0 : The mean biomass ratio is unaffected by reserve protection µ = 1)
HA : The mean biomass ratio is affected by reserve protection µ 6= 1)

We could use a a t− test but only so long we can safely assume that the biomass
ratios are drawn from a normal population. How can we test this assumption and
what do we do if it is violated?
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Graphical Methods

• Visually exploring your numerical
measures via histograms or boxplots
is a good way to see if distribution is
Normal (or not)

• A very useful graphical device is the
quantile-quantile plot ... compares
the observed distribution to what
would be expected under a standard
normal distribution (the z− score)

• Essentially the Quantile plot flips
the data into a z− score and then
plots where each observation falls
relative to what we know should
hold if it were Normally distributed.

• If distribution is Normal all
observed data should fall on a
straight line; deviations from the
straight line hint at violations of the
Normality assumption 7/42



Some More Examples
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Formal Test of Normality



A Formal Test: Shapiro-Wilk

H0 : Sample comes from a ∼ N(.) population; HA : Sample does not come
from a ∼ N(.) population; Set α = 0.05 or 0.01

Caution: You do not want to reject H0 otherwise you may have to transform
the data

• Shapiro-Wilk test statistic: W =

( n

∑aiY(i)

)2

n

∑(Yi− Ȳ )2
; 0≤W ≤ 1.

W → 1: Observed distribution is as expected if population were
Normal

• Skewness:
n

∑
i=1

(Yi− Ȳ )3

(n−1)s3

s = 0: Normal distribution; s < 0: skewed left; s > 0: skewed right

• Kurtosis:
n

∑
i=1

(Yi− Ȳ )4

(n−1)s4 −3

k = 0: Standard Normal distribution; K > 0: “Peaked”; k < 0: “Flat” 10/42



Some Examples

For MarineReserve
biomass.ratio
S-W: W = 0.8175,
P− value =
8.851e−05
Skewness: s = 1.61
Kurtosis: k = 2.29

For WolfTeeth
length
S-W: W = 0.959,
P− value = 0.2133
Skewness: s = 0.50
Kurtosis: k = 0.39
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Caution!!

• H0 : Sample comes from a Normally distributed population ... Rejecting
this does not necessarily mean that the sample does not come from a
Normal distribution

• In small samples even large departures from Normality may be missed
In large samples even small departures from Normality may be
overstated

• Visual examination of plots may not be supported by formal tests

A = 1.3584, P− value = 0.001617 ... hello??
• So what should you do? ... we now turn to our options
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1 Have faith in the Central Limit Theorem
So long as I have a sample size of 30 or more I can assume that the
sampling distribution of the sample mean follows the normal
distribution (even if the original measurement does not come from a
normal distribution)

2 Test statistics for means & confidence intervals of means will be
unaffected so long as you have a “large enough” sample to work with

• Most tests are robust to some violations of the normality
assumption so long as the sample size is not too small and the
skew isn’t very extreme

• How small? If there is similar skewness, even when comparing
two groups, having 30 in each group will work

• If I have one group with severe skewness (one left-skewed the
other right-skewed) then I need samples of a few hundred units
each before the test can be trusted

3 If all else fails (or you are a conservative analyst), try to transform the
data and rerun all tests ... We will try this tactic next

4 If this doesn’t solve the problem (or you are not a fan of massaging
your data) then switch to tests that do not require the Normality
assumption ... We will also see these tests in action 13/42



Data Transformations



Transformations

• If the original metric violates assumptions then try various transformations
and test if the transformation works

1 Natural logarithm used with substantial skewness:
(a) very positively skewed and Y > 0 then use Y

′
= ln(Y )

(b) very positively skewed and Y ≥ 0 then use ln(Y + c); where c is a
constant chosen such that the smallest score = 1

(c) very negatively skewed then use ln(K−Y ); where K = Ymax +1 so
that the smallest score = 1

(d) Often used with ratios or products of variables
2 Square Root used with moderate skewness:

(a) moderately positively skewed and Y > 0 then use
√

Y
(b) moderately positively skewed and Y ≥ 0 then use

√
Y +0.5

(c) moderately negatively skewed use
√

K−Y ; where K = Ymax +1 so
that the smallest score = 1

(d) Often used with count data

• Can also try the square: Y 2, the cube: Y 3, the antilog: eY , or the reciprocal: 1
Y

• If data are proportions the arcsine: arcsin
(√

p
)

is suggested but I would not do
this readily ... Proportions are essentially coming from your Binomial or
Poisson distributions and in these cases we would rarely run a t− test

• Moderate skew: −1.0≤ s≤−0.5 or +0.5≤ s≤+1.0

• Heavy skew: s <−1.0 or s >+1.0
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Transforming Biomass Ratios

Since the data are all > 0 and right-skewed we can start with the natural logarithm
of biomass ratios. The result?

Now we can run the t− test with this logged version of biomass ratios but with the
H0 value being specified as (µ

′
= 0) and HA as (µ

′ 6= 0) ... because ln[1] = 0
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H0: Mean log biomass ratio is 0 (µ
′
= 0)

HA: Mean log biomass ratio is not equal to 0 (µ
′
= 0)

α = 0.05
> t.test(marine$ln.biomassRatio, mu=0, alternative="two.sided", conf.level=0.95)

One Sample t-test

data: marine$ln.biomassRatio
t = 7.3968, df = 31, p-value = 2.494e-08

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

0.3470180 0.6112365

sample estimates:

mean of x

0.4791272

Given the low p− value we can reject H0

Note: The confidence intervals are given in natural log units so if we take
the antilog we can get the untransformed interval
> exp(c(0.3470180, 0.6112365))

[1] 1.414842 1.842708
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Some Non-Parametric Tests



Non-Parametric Tests

• Non-parametric tests are used (a) when transformations do not work, or (b)
the data represent ordinal categories (or are ranked data)

• Called non-parametric because unlike, say, the t− test which requires some
distributional assumption to be true (i.e., Normality) and involves parameters
(i.e., the mean and the variance), these alternatives make no such
assumptions or need no such parameters
They are more likely to lead to a Type II error so if the assumptions of
parametric tests are met use parametric tests

• You have already used a few related forms of a non-parametric test: The χ2

Test, Fisher’s Test
• Here are a few non-parametric analogues to the t− tests:

1 Sign Test: Alternative to the One-Sample t− test or to the Paired t− test
2 Wilcoxon Signed-Rank Test: Alternative to the Paired t− test
3 Mann-Whitney U− test: Alternative to the Two-Sample t− test with equal

variances
4 Kolmogorov-Smirnov test: Alternative to the Two-Sample t− test with

unequal variances
5 Permutation test: Alternative to the Paired and Two-sample t-test
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The Sign Test

• Assumption: Independent samples from a continuous distribution
• Tests whether the Median equals a hypothesized value (H0 value)
• Scores above H0 value are marked +; scores below are marked -
• Scores = to the Median are dropped
• If H0 is correct, 50% of the scores should be “+” and 50% should be “-”

... essentially a Binomial test where p0 = 0.50

• Hypotheses:
H0: Distribution is symmetric around p = 0.50 ... One-Sample test
HA: Distribution is not symmetric around p 6= 0.50

H0: Distribution of the two measurements is the same ... Paired test
HA: Distribution of the two measurements is not the same

• Has little power because it is simplistic. Works best with large samples
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Sexual Conflict and the Origin of the Species

The process by which a single species splits into two species is still not well
understood. One proposal involves “sexual conflict” – a genetic arms race between
males and females that arises from their different reproductive roles.For example,
in a number of insect species, male seminal fluid contains chemicals that reduce
the tendency of the female to mate again with other males. However, these
chemicals also reduce female survival, so females have developed mechanisms to
counter these chemicals. Sexual conflict can cause rapid genetic divergence
between isolated populations of the same species, leading to the formation of new
species. Sexual conflict is more pronounced in species in which females mate more
than once, leading to the prediction that they should form new species at a more
rapid rate.

To investigate this, Arnqvist et al. (2000) identified 25 insect taxa (groups) in which
females mate multiple times, and they paired each of these groups to a closely
related insect group in which females only mate once. Which type of insects tend to
have more species?

These are treated as paired data because the two sets of groups are closely related
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> shapiro.test(taxa$difference)
Shapiro-Wilk normality test

data: taxa$difference
W = 0.2547, p-value = 2.911e-10
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No. of Species No. of Species
polyandrous monandrous di ID Sign polyandrous monandrous di ID Sign

53 10 43 A + 37 115 -78 M −
73 120 -47 B − 100 30 70 N +

228 74 154 C + 21000 60 20940 O +

353 289 64 D + 37 40 -3 P −
157 30 127 E + 7 5 2 Q +

300 4 296 F + 15 7 8 R +

34 18 16 G + 18 6 12 S +

3400 3500 -100 H − 240 13 227 T +

20 1000 -980 I − 15 14 1 U +

196 486 -290 J − 77 16 61 V +

1750 660 1090 K + 15 14 1 W +

55 63 -8 L − 85 6 79 X +

86 8 78 Y +

Note: There are 7 − and 18 + observations with n = 25
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So 7 out of 25 independent trials generated a −
We would expect, under the assumption of no difference, 12 − and 12 +

What, then, is the probability of observing 7 “successes” in 25 independent
trials?
H0: Median difference in number of species is = 0
HA: Median difference in number of species is 6= 0
Set α = 0.05
binom.test(7, 25, p=0.5)

Exact binomial test

data: x and n

number of successes = 7, number of trials = 25, p-value = 0.04329

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval: 0.1207167 0.4938768

sample estimates: probability of success = 0.28

Reject H0; the Median difference is not = 0. The data suggest that groups of
insects whose females mate multiple times have more species than groups
whose females mate singly, consistent with the sexual-conflict hypothesis
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The Wilcoxon Signed-Rank Test

• Assumes the distribution is symmetric around the Median ... = no
skew! so very restrictive

• Steps:

1 Calculate Yi−µ0 for all i = 1,2, . . . ,n
2 Rank in ascending order the absolute differences |Yi−µ0| for all

i = 1,2, . . . ,n
3 Assign + or - to each rank
4 Let the sum of + and - ranks be W+ and W−, respectively
5 Let W = min

(
W+,W−

)
and W ∗α be critical W

6 Reject H0: The median difference between the two samples is
µ0 = 0 if ...

(a) HA: is µ 6= µ0 and W ≤W ∗α
(b) HA: is µ > µ0 and W− ≤W ∗α
(c) HA: is µ < µ0 and W+ ≤W ∗α
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polyandrous monandrous di rank sign pair polyandrous monandrous di rank sign pair

15 14 1 1.5 + U 37 115 -78 14.5 - M

15 14 1 1.5 + W 86 8 78 14.5 + Y

7 5 2 3 + Q 85 6 79 16 + X
37 40 -3 4 - P 3400 3500 -100 17 - H
55 63 -8 5.5 - L 157 30 127 18 + E

15 7 8 5.5 + R 228 74 154 19 + C
18 6 12 7 + S 240 13 227 20 + T
34 18 16 8 + G 196 486 -290 21 - J
53 10 43 9 + A 300 4 296 22 + F
73 120 -47 10 - B 20 1000 -980 23 - I
77 16 61 11 + V 1750 660 1090 24 + K

353 289 64 12 + D 21000 60 20940 25 + O
100 30 70 13 + N

W+ = 1.5+1.5+3+5.5+7+8+9+11+12+13+14.5+16+18+19+20+
22+24+25 = 230
W− = 4+5.5+10+14.5+17+21+23 = 95
wilcox.test(SexualSelection$polyandrous.species, SexualSelection$monandrous.species, paired=TRUE)

Wilcoxon signed rank test with continuity correction

data: SexualSelection$polyandrous.species and SexualSelection$monandrous.species
V = 230, p-value = 0.07139 alternative hypothesis: true location shift is not equal to 0

Warning message: In wilcox.test.default(SexualSelection$polyandrous.species,
SexualSelection$monandrous.species, : cannot compute exact p-value with ties

Do not reject H0; the distributions appear to be the same
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The Mann-Whitney U-Test

• The assumptions of the Mann-Whitney U test are:
1 The variable of interest is continuous (not discrete). The

measurement scale is at least ordinal
2 The probability distributions of the two populations are

identical, except for location (i.e., the “center”)
3 The two samples are independent
4 Both are simple random samples from their respective

populations
• H0: The samples come from populations with similar probability

distributions
• Test Process and Statistic ...

1 Combine both samples and rank, in ascending order, all values
2 If there are ties, rank accordingly
3 Sum the ranks of the smaller group (R1)

4 U1 = n1n2 +
n1(n1 +1)

2
−R1; U2 = n1n2−U1

5 Choose the larger of U1 or U2 as the test statistic
6 Reject H0 if P− value≤ α
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Sexual Cannibalism in Sagebrush Crickets

The sage cricket, Cyphoderris strepitans, has an unusual form of mating.
During mating, the male offers his fleshy hind wings to the female to eat.
The wounds are not fatal but a male with already nibbled wings is less
likely to be chosen by females he meets later. Females get some nutrition
from feeding on the wings, which raises the question, “Are females more
likely to mate if they are hungry?”

Johnson et al. (1999) answered this question by randomly dividing 24
females into two groups: one group of 11 females were starved for at least
two days and another group of 13 females was fed during the same period.
Finally, each female was put separately into a cage with a single (new)
male, and the waiting time to mating was recorded.

H0: Time to mating is the same for female crickets that were starved as for
those who were fed
HA: Time to mating is not the same for female crickets that were starved as
for those who were fed
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treatment time.to.mating rank treatment time.to.mating rank
fed 1.50 1 starved 17.90 13
fed 1.70 2 starved 21.70 14
starved 1.90 3 fed 22.60 15
starved 2.10 4 fed 22.80 16
fed 2.40 5 starved 29.00 17
fed 3.60 6 fed 39.00 18
starved 3.80 7 fed 54.40 19
fed 5.70 8 fed 72.10 20
starved 9.00 9 starved 72.30 21
starved 9.60 10 fed 73.60 22
starved 13.00 11 fed 79.50 23
starved 14.70 12 fed 88.90 24

The starved group is smaller so we’ll work with their ranks
R1 = 3+4+7+9+10+11+12+13+14+17+21 = 121

U1 = n1n2 +
n1(n1 +1)

2
−R1 = 11(13)

11(11+1)
2

−121

= 143+
132

2
−121 = 143+66−121 = 88 and hence U2 = n1n2−U1 = 11(13)−121 = 55

wilcox.test(SagebrushCrickets$time.to.mating ~ SagebrushCrickets$treatment, paired=FALSE)

Wilcoxon rank sum test

data: SagebrushCrickets$time.to.mating by SagebrushCrickets$treatment
W = 88, p-value = 0.3607

alternative hypothesis: true location shift is not equal to 0

Do not reject H0; time to mating does not appear to be different for starved versus
fed female crickets
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What do we do if we have Tied Ranks?

The preceding example has no cases with the same rank (i.e., tied ranks)
If two observations have the same rank we give them the average rank

(
i+ j

2

)

If three observations have the same rank we give them the average rank
(

i+ j+ k
3

)
... and so on

In the following example the question is whether blind versus sighted individuals
use more or less gestures. These data have several ties as shown in the table on the
following slide

1 The first 5 observations all have 0 gestures so the average rank becomes
1+2+3+4+5

5
= 3

2 The next 12 observations are tied with 1 gesture so the average rank ends up
being 6+7+8+9+10+ . . .+16+17

12
= 11.5

3 The next 4 observations are tied with 2 gestures so the average rank ends up
being 18+19+20+21

4
= 19.5

4 The final 3 observations are tied with 3 gestures so the average rank ends up
being 22+23+24

3
= 23
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Sightedness and Gestures

condition gestures rank condition gestures rank
sighted 0 3 blind 1 11.5
sighted 0 3 blind 1 11.5
sighted 0 3 blind 1 11.5
blind 0 3 blind 1 11.5
blind 0 3 blind 1 11.5
sighted 1 11.5 sighted 2 19.5
sighted 1 11.5 sighted 2 19.5
sighted 1 11.5 sighted 2 19.5
sighted 1 11.5 blind 2 19.5
blind 1 11.5 sighted 3 23
blind 1 11.5 sighted 3 23
blind 1 11.5 blind 3 23

H0: Number of gestures is not related to sightedness
HA: Number of gestures is related to sightedness
Set α = 0.05 and note that I am picking the sighted group for R1 ...
R1 = 3+3+3+11.5+11.5+11.5+11.5+19.5+19.5+19.5+23+23 = 159.5

U1 = n1n2 +
n1(n1 +1)

2
−R1 = 12(12)+

12(13)
2
−159.5 = 62.5

U2 = n1n2−U1 = 144−62.5 = 81.5
> wilcox.exact(gestures$numberOfGestures ~ gestures$sightedness, paired=FALSE)

Exact Wilcoxon rank sum test

data: gestures$numberOfGestures by gestures$sightedness
W = 62.5, p-value = 0.6361

alternative hypothesis: true mu is not equal to 0

Do not reject H0; number of gestures appear to be unrelated to sightedness
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The Kolmogorov-Smirnov (K-S) test

• This (very weak) test is used to compare the distributions of two
groups by comparing the empirical cumulative distribution functions
(ecdfs) of the two groups and finding the greatest absolute distance
between the two

• The ecd f is F̂(Y ) = fraction of sample with values ≤ Yi , where
i = 1,2,3, · · · ,n

• The K−S statistic is Dmax = |F̂1(Y )− F̂2(Y )|
• Assumptions:

1 The measurement scale is at least ordinal.
2 The probability distributions are continuous
3 The two samples are mutually independent
4 Both samples are simple random samples from their respective

populations
• H0: F1(Y ) = F2(Y ) for all Yi

HA: F1(Y ) 6= F2(Y ) for at least one Yi

• Reject H0 if P− value of calculated Dmax ≤ α
32/42



Eye to Eye

The stalk-eyed fly, Crytodiopsis dalmanni, is a bizarre-looking insect from
the jungles of Malaysia. Its eyes are at the ends of long stalks that emerge
from its head, making the fly look like something from the cantina scene in
Star Wars. These eye stalks are present in both sexes, but they are
particularly impressive in males. The span of the eye stalk in males
enhances their attractiveness to females as well as their success in battles
against other males. The span, in millimeters, from one eye to the other,
was measured in a random sample of 45 male stalk-eyed flies.
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The Stalkies’ Example: Detailed K-S Test

• The graphical tests and the var.test() tell us to reject both assumptions
– the distributions may not be Normal and the variances may be
unequal

• The K−S test is ideally suited for this situation
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Steps for the K−S test

1 Arrange all eye.spans in ascending order

2 Calculate the cumulative frequency for each group – how many
observations of group 1 have eye.spans ≤ each eye.span?

3 Convert these cumulative frequencies into relative cumulative
frequencies (as proportions)

4 For each value of eye.span, calculate the difference between the
relative cumulative frequency proportions of each group

5 Identify where the greatest difference is found

6 ... The logic? If the distributions are the same then the relative
cumulative frequencies should be similar as well
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Calculations for the Stalkies2 Example

eye.span cotton corn cotton.cf.p corn.cf.p diff eye.span cotton corn cotton.cf.p corn.cf.p diff

1.05 1 0 0.0417 0.0000 0.0417 1.89 20 1 0.8333 0.0476 0.7857
1.11 2 0 0.0833 0.0000 0.0833 1.93 21 2 0.8750 0.0952 0.7798
1.24 3 0 0.1250 0.0000 0.1250 1.95 21 3 0.8750 0.1429 0.7321
1.26 4 0 0.1667 0.0000 0.1667 1.96 21 4 0.8750 0.1905 0.6845
1.29 5 0 0.2083 0.0000 0.2083 1.99 21 5 0.8750 0.2381 0.6369
1.33 6 0 0.2500 0.0000 0.2500 2.00 21 6 0.8750 0.2857 0.5893
1.34 7 0 0.2917 0.0000 0.2917 2.01 22 7 0.9167 0.3333 0.5833
1.39 8 0 0.3333 0.0000 0.3333 2.02 22 8 0.9167 0.3810 0.5357
1.43 9 0 0.3750 0.0000 0.3750 2.03 22 9 0.9167 0.4286 0.4881
1.45 10 0 0.4167 0.0000 0.4167 2.04 22 10 0.9167 0.4762 0.4405
1.49 11 0 0.4583 0.0000 0.4583 2.05 22 11 0.9167 0.5238 0.3929
1.54 12 0 0.5000 0.0000 0.5000 2.07 23 11 0.9583 0.5238 0.4345
1.55 13 0 0.5417 0.0000 0.5417 2.08 23 14 0.9583 0.6667 0.2917
1.56 14 0 0.5833 0.0000 0.5833 2.10 23 15 0.9583 0.7143 0.2440
1.58 15 0 0.6250 0.0000 0.6250 2.11 23 16 0.9583 0.7619 0.1964
1.59 16 0 0.6667 0.0000 0.6667 2.12 24 17 1.0000 0.8095 0.1905
1.61 17 0 0.7083 0.0000 0.7083 2.13 24 19 1.0000 0.9048 0.0952
1.64 18 0 0.7500 0.0000 0.7500 2.14 24 20 1.0000 0.9524 0.0476
1.68 19 0 0.7917 0.0000 0.7917 2.15 24 21 1.0000 1.0000 0.0000
1.77 20 0 0.8333 0.0000 0.8333

The cotton & corn columns list the cumulative frequencies of eye.span for each group
The columns ending in “cf.p” are these cumulative frequencies expressed as relative
cumulative frequencies
diff is = cotton.c f .p− corn.c f .p for each value of eye.span, and it is easy to see that
the greatest difference occurs at eye.span = 1.77
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The ecdf() and Test Results

ks.test(fed$eye.span, starved$eye.span, alternative="two.sided")

Two-sample Kolmogorov-Smirnov test

data: fed$eye.span and starved$eye.span
D = 0.8333, p-value = 3.51e-07

alternative hypothesis: two-sided

Warning message: In ks.test(fed$eye.span, starved$eye.span, alternative = "two.sided") : cannot compute correct p-values

with ties

Reject H0; diet has an effect on eye spans
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Permutation Tests

• Useful alternatives to the Paired and the Two-sample t-test
• These tests generate a NULL distribution for the association between

the numeric outcome variable and the categorical group variable
• Works by randomly reorganizing the original data (shown below)

Treatment Time to mating Treatment Time to mating

starved 1.9 fed 1.5
starved 2.1 fed 1.7
starved 3.8 fed 2.4
starved 9.0 fed 3.6
starved 9.6 fed 5.7
starved 13.0 fed 22.6
starved 14.7 fed 22.8
starved 17.9 fed 39.0
starved 21.7 fed 54.4
starved 29.0 fed 72.1
starved 72.3 fed 73.6

fed 79.5
fed 88.9

38/42



(1) Randomly reassign Time to mating i

Treatment Time to mating Treatment Time to mating

starved 3.8 fed 14.7
starved 9.0 fed 21.7
starved 3.6 fed 1.7
starved 79.5 fed 2.1
starved 17.9 fed 1.5
starved 22.8 fed 2.4
starved 54.4 fed 5.7
starved 13.0 fed 39.0
starved 9.6 fed 29.0
starved 1.9 fed 72.1
starved 22.6 fed 88.9

fed 72.3
fed 73.6

(2) Calculate Ȳstarved − Ȳ f ed = 21.65−32.67 =−11.02

(3) Repeat this random juggling of the data at least 1,000 times, maybe
even 10,000 times. Calculate Ȳstarved − Ȳ f ed for each permutation

(4) Calculate proportion of permutations with Ȳstarved−Ȳ f ed <= Ȳstarved−Ȳ f ed

in the original data (-18.26). This is the p-value (one-tailed)
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> perm.test(cric$timeToMating ~ cric$feedingStatus, paired=FALSE, alternative="two.sided", exact

=TRUE)

2-sample Permutation Test (scores mapped into 1:(m+n) using rounded

scores)

data: cric$timeToMating by cric$feedingStatus
T = 123, p-value = 0.1376

alternative hypothesis: true mu is not equal to 0

Assumptions:

• Random samples
• Outcome is similarly shaped (i.e., distributed) in each group

Robust in large samples but low-powered (i.e., more likely to lead to Type II
error) in small samples.

As powerful as t-tests in large samples
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Testing Situations and Choices ...

• One-Sample or Paired Design

1 Test for Normality
2 If N() holds then use the One-Sample t− test
3 If N() does not hold then try a transformation, test for N() again
4 If N() still does not hold then use the Sign test (one sample) or the Wilcoxon

Signed-Rank test (paired design)
5 Permutation test

• Two Sample design (equal variances)

1 Test for Normality and equal variances
2 If N() holds and variances are equal then use the Two-Sample t− test with

var.equal = T RUE
3 If N() does not hold then try a transformation, test for N() again
4 If N() still does not hold then use the Mann-Whitney U− test
5 Permutation test for Paired designs

• Two Sample design (unequal variances)

1 Test for Normality and equal variances
2 If N() holds but variances are unequal then use the Two-Sample t− test with

var.equal = FALSE
3 If N() does not hold then try a transformation, test for N() again
4 If N() still does not hold then use the Kolmogorov-Smirnov test
5 Permutation test
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Transformations and Back-transformations

• Popular Transformations
• The Natural Logarithm: Y

′
= ln[Y ] if Y > 0

• The Natural Logarithm: Y
′
= ln[Y +1] if Y ≥ 0

• The Square Root: Y
′
=
√

Y + 1
2

• The Arcsine: p
′
= arcsin[

√
p]

• The Corresponding Back-transformations
• The Natural Logarithm: Y = eY

′

• The Square Root: Y = Y
′2− 1

2

• The Arcsine: p =
(

sin[p
′
]
)2
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