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Analysis of Variance (ANOVA)



The Trouble with Multiple Comparisons

• Often you have more than two groups you want to compare and contrast
• Why not use the two-sample t− test and compare two groups at a time?
• In any single trial we have a certain probability of a significant result by

chance alone (α) and hence 1−α is the probability of no significant result
• If my experiment has 5 groups (A, B, C, D, and E) and I compare two groups at a

time, I am simultaneously testing AB, AC, AD, AE, BC, BD, BE, CD, CE, and DE
• What is the probability that at least one of these pairs throws up a significant

result by chance alone? ... this is P(Type I) error = α = 0.05

P(no Type I error in 1 comparison) = 0.95

P(no Type I error in 2 comparisons) = 0.95×0.95 = 0.9025

Note: P(Type I error in 2 comparisons) is = 1−0.9025 = 0.0975

P(no Type I error in 3 comparisons) = 0.95×0.95×0.95 = 0.8573

Note: P(Type I error in 3 comparisons) is = 1−0.857375 = 0.1426

... the probability of making a Type I error is exploding!
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Correcting for Multiple Comparisons: Bonferroni

Table 1: α = 0.05

Trials α∗

3 0.0167
4 0.0125
5 0.0100
6 0.0083
7 0.0071
8 0.0063
9 0.0056

Use α∗ =
α

no. of trials and Reject each H0 only if P− value≤ α∗

So if I have 3 pairwise comparisons (A - B, A - C, B - C) and I am using
α = 0.05, then use α∗ =

0.05
3

= 0.0166 for each pairwise comparison
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The Logic of ANOVA

Example
One particularly contentious issue among restoration ecologists is the
timing of prairie burns. Although natural fires may primarily have been
sparked by late-summer lightning strikes, most controlled burns are done
during the spring or fall. The timing of burning may strongly influence the
outcome of prairie restorations because burns done at different times of
year can favor dramatically different plant species. You could collect data
to answer the following question: How does the timing of controlled burns
influence the biomass of desirable prairie plant species?

Total biomass (g/m2) of Rudbeckia hirta (Black-eyed Susan) growing in each
of 15 0.5m2 plots.

One third of the plots were burned in the spring, late summer, and fall of
1998, respectively. All plots were sampled during summer 1999.
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Season of Controlled Burn

Spring Late Summer Fall

0.10 5.56 3.85
0.61 6.97 3.01
1.91 3.01 2.13
2.99 5.33 2.50
1.06 3.53 6.10

ȳ1 = 1.33 ȳ2 = 4.88 ȳ3 = 3.52
s2
1 = 1.30 s2

2 = 2.59 s2
3 = 2.50
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Season of Controlled Burn
Spring Late Summer Fall

0.10 5.56 3.85
0.61 6.97 3.01
1.91 3.01 2.13
2.99 5.33 2.50
1.06 3.53 6.10

ȳ1 = 1.33 ȳ2 = 4.88 ȳ3 = 3.52
s2
1 = 1.30 s2

2 = 2.59 s2
3 = 2.50

• Biomass varies in each plot and in each season, this could be
something to do with the season or sheer chance (each plot is unique
after all)

• Biomass also varies most in Late Summer and least in Spring
• Average biomass is highest in Late Summer and lowest in Spring
• How then do we figure out if the treatment (the season when the

controlled burn occurred) really matters or whether what we see is
strictly due to chance?
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Analysis of Variance (ANOVA)

• ANOVA is a hypothesis testing procedure that allows us to
simultaneously compare more than two groups and determine if
there are statistically significant differences between the groups

• ANOVA also lets us test the influence of two or more factors (i.e.,
independent variables) on the response (i.e., dependent variable)

• The basic test statistic is a ratio ... Difference between groups
Difference within groups

• If difference between groups > difference within each group, it must
be because something makes at least one group different from the
other groups. This “something” has to be the treatment since we are
assuming everything else has been controlled for (or doesn’t
influence the response)
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How shall we measure and analyze “difference”?

• We could ask: How much does each observation differ from the
overall Mean? This would give us total variability in the full sample

• We could also ask: How do the groups (i.e., the treatments) differ on
average from the overall mean? This would give us variability between
each treatment group.

• We could also ask: In each treatment group, how much does each
group member differ from his/her group Mean? This would give us
variability within each treatment group

• What would be a good measure of variability? The variance of course!

• So we look at a few variances

1 Total variation of all scores
2 Variation between-groups
3 Variation within-groups
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Between-groups and Within-groups Variance

• Within-groups, differences must be due to chance because the
treatment is a constant for each group.

• Between-groups, differences may be due to (i) chance and/or (ii)
treatments. In other words, if the treatment has an effect it must
influence each measurement in more or less the same way

• Test statistic: Ratio of between-groups variance to within-groups
variance

F =
Variance Between-groups
Variance Within-groups

∴ F =
Variance due to Chance+Variance due to Treatments

Variance due to Chance

• If variance due to treatments = 0, what will F be?
• If variance due to treatments is large, what will F be?
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The Elements of ANOVA

• We refer to the independent variable(s) as the factor(s)
• With just one factor we speak of a single-factor design ... for example, the

season of the burn (one factor with three categories, spring, late summer,
fall)

• With two or more factors we speak of a factorial design ... for example, (1)
the temperature in a chamber and (2) the fertilizer being used to see
impact on plant growth

• The values (categories) of a factor we refer to as the treatments
• The outcome is referred to as the response variable
• Assumptions of ANOVA

1 The response variable is ∼ N(.) (i.e., Normally distributed) ... how would
you test this?

2 The variance (σ2) of the response variable is the same for all groups ... how
would you test this?

3 The observations are independent within each group (i.e., random
sampling was not violated) ... assumedly true since otherwise we would not
be doing any statistical test at all
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• Recall that the variance is calculated as follows: ∑(yi− ȳ)2

N
. Here, the numerator

... ∑(yi− ȳ)2 is the sum of squares
• We need a common anchor for all the data, something to serve as the basis for

however we wish to answer our question. A good starting point thus becomes
the overall mean, which we call the grand mean and denote this by ¯̄y. For the
burn data ¯̄y = 3.244

• How does each plot differ from this overall mean? ... A good measure would be
some estimate of the difference between each biomass and the grand mean.
This could be done by calculating yi− ¯̄y. If we want total variation around the
grand mean we would have to sum the square of these differences (since if we
don’t square the differences their sum will be zero)

• The resulting quantity will be the total sum of squares ... ∑(yi− ¯̄y)2 =(
(0.10−3.244)2 +(0.61−3.244)2 + . . .+(2.50−3.244)2 +(6.10−3.244)2)=

57.54476.
• This is all the variation of the full sample around the grand mean, either

because individual plots differ (by chance) or because the seasons (the
treatments) really creates more/less biomass

• We know we have two parts to total sum of squares , (a) that part due to chance,
and (b) that part due to the treatments
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• How could we measure how much each Season’s average differs from
the grand mean? By subtracting each Season’s mean from the grand
mean, squaring this difference, and then weighting the squared
difference by the number of observations in each group ... ∑

(
ȳ j− ¯̄y

)2

• ... 5× (1.334−3.244)2 +5× (4.880−3.244)2 +5× (3.518−3.244)2 =

18.2405+13.38248+0.37538 = 31.99836 ... This is the Between Groups
sum of squares

• Note: We are multiplying the difference between each group mean
and the grand mean by the number of observations in each sample to
“weight” the calculation otherwise the assumption is that each
sample is providing equal information but it may be that n1 6= n2 6= n3
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• How about the variability within each Season (which should be by
chance since it is the same Season for all plots)? By subtracting (and
squaring) the distance of each plot’s biomass from its seasonal
average ... We call this the Within Groups sum of squares

• ∑
(
yi j− ȳ j

)2
= (0.10−1.334)2 +(0.61−1.334)2 + . . .+(1.06−1.334)2 for

Spring, and similarly for Late Summer and for Fall. The resulting sums
will be 5.19612, 10.3524 and 9.99788, resulting in the Within Groups
sum of squares of 25.5464

• Total sum of squares = Between Groups SS + Within Groups SS ...
57.54476 = 31.99836+25.5464
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Mean Square Between Groups

Thus far, we have only looked at the sums of squares and while this is
useful, we need to calculate the (a) variance between groups and the (b)
variance within groups

When we calculated the variance, what did we do? Well, we did the

following for a sample: s2 =
∑(yi− ȳ)2

n−1

So how can we calculate the variance Between Groups? By dividing the
total sum of squares between groups by the number of groups - 1.

This would give us: 31.99836
3−1

= 15.99918
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Mean Square Within Groups

The variance Within Groups can be estimated likewise, except by dividing
the total sum of squares within groups by the total sample size - number of
groups, and this would yield: 25.5464

15−3
= 2.128867

Note: If the denominator in the variance Within Groups does not make
sense think of the calculation as follows:

• variance for Spring: ∑(yi− ȳ1)
2

n1−1
+

• variance for Late Summer: ∑(yi− ȳ2)
2

n2−1
+

• variance for Fall: ∑(yi− ȳ3)
2

n3−1
• ... n1−1+n2−1+n3−1 = n1 +n2 +n3−3 = n−3
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The Mechanics of ANOVA

• The Hypotheses: H0 : µ1 = µ2 = · · ·= µk

Ha : Not all population means are equal
• i indexes observations; j indexes groups; µ j is mean of the jth group;

n j is sample size of group j; k is the total number of groups; yi j is
score for observation i for group j

• ȳ j is mean for group j

ȳ j =
1
n j

n j

∑
i=1

yi j

• s2
j and s j are variance and standard deviation for group j

s2
j =

1
n j−1

n j

∑
i=1

(yi j− ȳ j)
2

• ¯̄y is the overall sample mean

¯̄y =
1

nT

k

∑
j=1

n j

∑
i=1

yi j

• Note that nT = n1 +n2 + · · ·+nk
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Season of Controlled Burn
Spring Late Summer Fall

0.10 5.56 3.85
0.61 6.97 3.01
1.91 3.01 2.13
2.99 5.33 2.50
1.06 3.53 6.10

ȳ = 1.33 ȳ = 4.88 ȳ = 3.52
s2 = 1.30 s2 = 2.59 s2 = 2.50

The overall mean is ¯̄y = 3.24
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Between-Groups and Within-Groups

• Mean Square due to Groups (MSGroups) is given by
SSGroups

k−1

SSGroups =
k

∑
j=1

n j(ȳ j− ¯̄y)2 = 5(1.33−3.24)2 +5(4.88−3.24)2 +5(3.52−3.24)2 = 32.00

MSGroups =
1

k−1

k

∑
j=1

n j(ȳ j− ¯̄y)2 =
32.00
3−1

=
32.00

2
= 15.99

• Mean Square due to Error (MSError) is given by SSError

nT − k

SSError =
k

∑
j=1

(n j−1)s2
j = 4(1.30)+4(2.59)+4(2.50) = 25.55

MSError =
1

nT − k

k

∑
j=1

(n j−1)s2
j =

25.55
15−3

=
25.55

12
= 2.129

• Note also that SSTotal = SSGroups +SSError = 32.00+25.55 = 57.55

SSTotal =
k

∑
j=1

n j

∑
i=1

(yi j− ¯̄y)2
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Calculating the F-ratio

• F =
MSGroups

MSError
=

15.99
2.129

= 7.515

• F ∼ Fd fNumerator ;d fDenominator = F2,12

1 d fNumerator = k−1 · · · No. of groups - 1

2 d fDenominator = nT − k · · · Total sample size - No. of groups

• Reject H0 if P− value≤ α ; Do not reject H0 otherwise

Assume we set α = 0.05

For F = 7.515 with d fNumerator = 2 and d fDenominator = 12 the
P− value = 0.00765

Hence we reject H0; The timing of the controlled burn season does
seem to influence biomass
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The ANOVA Table

The ANOVA table will look like the following when you run ANOVA in R
> lm.ex1 <- lm(Biomass ~ Season, data=ex1)

> anova(lm.ex1)

Analysis of Variance Table

Response: Biomass

Df Sum Sq Mean Sq F value Pr(>F)

Season 2 31.998 15.9992 7.5154 0.007655 **

Residuals 12 25.546 2.1289

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Sum Sq is the Sum of Squares; Mean Sq is Mean Squares
Mean Sq for Season is 31.998 divided by 2; Mean Sq for Error (Residuals) is
25.546 divided by 12
F value is Mean Sq Season divided by Mean Sq Error (Residuals)
Pr(>F) is the P− value for the calculated F
** indicates the P− value is < 0.01 and * indicates the P− value is < 0.05

R2 =
SSGroups

SSTotal
and indicates what proportion of the variation in y is

explained by group differences
0≤ R2 ≤ 1; The closers is R2 to 1 the more the proportion of variation in y
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The JetLagKnees Example

Traveling to a different time zone can cause jet lag but people adjust as the
schedule of light to their eyes in the new time zone resets their internal
circadian clock. This change in the internal clock is called a phase shift.
Researchers suggested that the human circadian clock can also be reset by
exposing the back of the knee to a light. This claim met with skepticism and
a new experiment was conducted.
This new experiment measured circadian rhythm by the daily cycle of
melatonin production in 22 people randomly assigned to one of three light
treatments. Participants were awakened from sleep and subjected to a
single three-hour episode of bright lights applied (a) to the eyes only, (b) to
the knees only, or (c) to neither (the Control group).
The effects of the light treatment were measured two days later by the
magnitude of the phase shift in each participant’s daily cycle of melatonin
production. A negative value indicates a delay in melatonin production
(which is what the light treatment should do as hypothesized). Positive
values indicate an advance. Does light treatment affect phase shift?
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The JetLagKnees Example
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Running an ANOVA Test on JetLagKnees

H0: Average phase shift is equal in all three groups, i.e., µ1 = µ2 = µ3

HA: Average phase shift is not equal in all three groups (i.e., At least one µ j

is different)

Set α = 0.05
> lm.knees = lm(shift ~ treatment, data=circadian)

> anova(lm.knees)

Analysis of Variance Table

Response: shift

Df Sum Sq Mean Sq F value Pr(>F)

treatment 2 7.2245 3.6122 7.2894 0.004472 **

Residuals 19 9.4153 0.4955

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Since the P− value = 0.004472 is less than 0.05 we reject H0; the data
suggest that at least one of the groups has a different mean phase shift as
compared to the other two groups
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ANOVA Redux

• ANOVA allows us to compare if three or more groups differ by looking at the
variance between groups (where each group corresponds to a treatment) versus
the variance within groups

• It is built on some assumptions (see below) but is fairly robust to modest
violations of assumptions

1 The response variable is Normally distributed ... minor deviations will not
inflate Type I error rates so long as the skew is roughly similar for each
group and so long as the samples are large enough (say at least 30 in each
group)

2 The variance (σ2) of the response variable is the same for all groups ... This
is tricky because if this assumption is violated the p-value for the test will
be incorrect. You may get away with it if the samples are large, equally
sized, and no group’s variance is at least 10-times that of another group (or
so the text tells you, but use this 10-times rule with caution)

3 The observations are independent within each group (i.e., random
sampling was not violated) ... Don’t do any simple test if you don’t have a
random sample

• ANOVA can be used to compare two-groups but the t-test is more efficient here
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Testing Assumptions: Normality

H0: Biomass is normally distributed in each group (Season)
HA: Biomass is NOT normally distributed in each group (Season)
> with(ex1, tapply(Biomass, Season, shapiro.test))

$Spring
W = 0.961, p-value = 0.8147

$‘Late Summer‘

W = 0.9415, p-value = 0.6763

$Fall
W = 0.879, p-value = 0.3047
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Testing Assumptions: Variances

The F-test will not work here (because we have more than 2 groups). Levene’s would
work. Recall the H0 here: The samples are drawn from populations with
homogeneity of variances (i.e., equal variances)
> leveneTest(ex1$Biomass ~ ex1$Season, center="mean")

Levene’s Test for Homogeneity of Variance (center = "mean")

Df F value Pr(>F)

group 2 0.3794 0.6922

12

> leveneTest(ex1$Biomass ~ ex1$Season, center="median")

Levene’s Test for Homogeneity of Variance (center = "median")

Df F value Pr(>F)

group 2 0.1672 0.8479

12

In a nutshell, then, Normality could be assumed and so could equal variances,
which mean the ANOVA test results should be okay

If normality was rejected we would have to find a transformation, test for normality,
test for equal variances, and then proceed with ANOVA if both normality and equal
variances could be assumed

Welch’s one-way ANOVA would be appropriate if the data were normal but the
variances were unequal

If you have non-normal data no transformation whips into shape, you may have to
use a non-parametric test ... Kruskal-Wallis

27/45



Testing Assumptions of the Jet Lag ANOVA
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> with(circadian, tapply(shift, treatment, shapiro.test))

$control
Shapiro-Wilk normality test

data: X[[1L]]

W = 0.9329, p-value = 0.5428

$knee
Shapiro-Wilk normality test

data: X[[2L]]

W = 0.9887, p-value = 0.9907

$eyes
Shapiro-Wilk normality test

data: X[[3L]]

W = 0.9194, p-value = 0.4648

> leveneTest(circadian$shift ~ circadian$treatment, center="mean")

Levene’s Test for Homogeneity of Variance (center = "mean")

Df F value Pr(>F)

group 2 0.1563 0.8564

19

> leveneTest(circadian$shift ~ circadian$treatment, center="median")

Levene’s Test for Homogeneity of Variance (center = "median")

Df F value Pr(>F)

group 2 0.1586 0.8545

19
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Planned Comparisons



Planned Comparisons

Planned comparisons are comparisons between groups, and identified before the
data were gathered (i.e., this was planned during the research design stage)

You have to pick ONE or at most TWO pairs to compare

Essentially no different from the two-sample t− test except in that the standard error

is calculated differently: SE =

√
MSError

(
1
n1

+
1
n2

)
So for the knee versus control planned comparison we have

SE =

√
0.4955

(
1
7
+

1
8

)
=
√

0.1327232 = 0.364312

The test involves calculating the difference in the means of the two groups and
dividing this by SE to get a t-value. We can then calculate the p-value for this t with
d f = N− k = 22−3 = 19

If the resulting p-value is less than 0.05 then we can reject the NULL of no difference
between these two groups. Note: R lists t but it is really q
Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

knee - control == 0 -0.02696 0.36433 -0.074 0.942

(Adjusted p values reported -- single-step method)
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in detail now ...

Let us look at the mean shift in each of the three groups ...
> with(circadian, tapply(shift, treatment, mean))

control knee eyes

-0.3087500 -0.3357143 -1.5514286

Notice that ȳknee− ȳcontrol =−0.3357143− (−0.3087500) =−0.0269643. This is
what was reported on the previous slide. Dividing this difference by the
SE = 0.36433 yields q =−0.07401065. Calculating the p-value of this q (see
below) shows it to be
> 2 * (1 - pt(-0.07401065, df=19, lower.tail=FALSE))

[1] 0.9417756

Since this is > 0.05 we cannot reject H0; there is no statistically significant
difference in mean phase shift between the knee and the control group.
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Planned Comparison for the Controlled Burn data

Planned ... (assume our interest was in Spring versus Fall)
> burnPlanned <- glht(lm.ex1, linfct = mcp(Season = c("Spring - Fall = 0")))

> summary(burnPlanned)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: User-defined Contrasts

Fit: lm(formula = Biomass ~ Season, data = ex1)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

Spring - Fall == 0 -2.1840 0.9228 -2.367 0.0356 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Adjusted p values reported -- single-step method)

> confint(burnPlanned)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: User-defined Contrasts

Fit: lm(formula = Biomass ~ Season, data = ex1)

Quantile = 2.1788

95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr

Spring - Fall == 0 -2.1840 -4.1946 -0.1734
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Unplanned Comparisons



Unplanned Comparisons: Tukey-Kramer Method

Also known as Tukey’s Honestly Significant Differences (HSD) Test or the Tukey-Kramer
Test

These are post hoc tests because during the research design phase we had no idea
which groups to focus on. So this test is akin to saying “ANOVA results show at least
one group is different; let us go hunt for which groups are different”

1 Arrange all means in ascending order, then compare two groups one at a time

2 Test statistic: q =
ȳ1− ȳ2

SE
; SE is as calculated before; and ȳ1 is the higher mean of

the two group means. Note: R lists t but it is really q

3 p-values are adjusted for the multiple comparisons by multiplying the raw
p-value by the number of comparisons being made

> circadianTukey <- glht(lm.knees, linfct = mcp(treatment = "Tukey"))

> summary(circadianTukey)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = shift ~ treatment, data = circadian)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

knee - control == 0 -0.02696 0.36433 -0.074 0.99699

eyes - control == 0 -1.24268 0.36433 -3.411 0.00776 **

eyes - knee == 0 -1.21571 0.37628 -3.231 0.01165 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Adjusted p values reported -- single-step method)
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Unplanned Comparisons for the Controlled Burn data

Time to hunt ...
> burnTukey <- glht(lm.ex1, linfct = mcp(Season = "Tukey"))

> summary(burnTukey)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = Biomass ~ Season, data = ex1)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

Late Summer - Spring == 0 3.5460 0.9228 3.843 0.00586

Fall - Spring == 0 2.1840 0.9228 2.367 0.08438

Fall - Late Summer == 0 -1.3620 0.9228 -1.476 0.33595

Late Summer - Spring == 0 **

Fall - Spring == 0 .

Fall - Late Summer == 0

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Adjusted p values reported -- single-step method)

Note: Compare the results of this unplanned comparisons to that of the
planned comparison. Why the different outcomes?
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Welch’s One-Way ANOVA



What if Normality holds but Variances are Unequal?

Should normality hold but variances are unequal, Welch’s one-way ANOVA
comes in handy

W ∗ =
∑w j

(
ȳ j− µ̂

)2
/(k−1)

1+
[
2(k−2)/

(
k2−1

)]
∑h j

where w j =
n j

s2
j
; µ̂ =

∑w jy j

W
; W = ∑w j ; h j =

(
1−w j/W 2)(

n j−1
) , and; f =

(
k2−1

)
3∑h j

W ∗ ∼ F (d f1 = k−1,d f2 = f )

H0 and HA are the usual ones for ANOVA
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An Example: Skiing Performance
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Checking Normality & Equal Variances
> with(ski, tapply(score, grips, FUN = shapiro.test))

$Classic
Shapiro-Wilk normality test

data: X[[i]]

W = 0.9959, p-value = 0.8777

$Integrated
Shapiro-Wilk normality test

data: X[[i]]

W = 0.9987, p-value = 0.9311

$Modern
Shapiro-Wilk normality test

data: X[[i]]

W = 0.97406, p-value = 0.8665

> with(ski, leveneTest(score, grips, center = median))

Levene’s Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)

group 2 9.5746 0.009925 **

7

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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The test & Multiple Comparisons
> oneway.test(score ~ grips, data = ski, var.equal = FALSE)

One-way analysis of means (not assuming equal variances)

data: score and grips

F = 24.975, num df = 2.0000, denom df = 4.1069, p-value = 0.005029

We can reject H0; at least one grip-type is different. Given that we have
unequal variances and unequal sample sizes, the Games-Howell pairwise
tests would be perfectly suited to this situation:
> library(userfriendlyscience)

> posthocTGH(y = ski$score, x = ski$grips)
n means variances

Classic 3 163 0.81

Integrated 3 171 2.56

Modern 4 157 209.98

t df p

Classic:Integrated 7.54 3.2 0.0084

Classic:Modern 0.83 3.0 0.7138

Integrated:Modern 1.92 3.1 0.2746

Only significant difference appears to be between Classic and Integrated.
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Nonparametric Alternatives to
ANOVA



The Kruskal-Wallis Test

The Kruskal-Wallis test is the nonparametric alternative to the ANOVA

1 Rank all the scores regardless of which group they belong to

2 Tied scores get average ranks

3 Add the ranked scores in each group

4 Calculate H =

[
12

N(N +1)
×∑

T c2

nc

]
−3(N +1)

N is the total number of scores in the study; T c is the rank total for
each group; nc is the number of units in each group

5 Test statistic is H ∼ χ2 with d f = k−1

6 Reject H0 that the distribution of scores is the same across the groups
if p-value is ≤ α
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...

H0: The populations represented by the k groups have the same
distribution of scores on the response variable
HA: The populations represented by the k groups do not have the same
distribution of scores on the response variable
Note: There is no use of the word “normal” in H0 and HA; the test is simply
asking whether they do or don’t come from an identical distribution
(whatever that distribution might be)
The test will be weak if you have very differently skewed distributions (say
one left the others right) or the variances are very different

Best use may thus be if you have ranked measurements rather than actual
scores, and even then only to test whether the mean or median ranks differ
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Ranking Wines

To assess the effects of expectation on the perception of aesthetic quality,
an investigator randomly sorts 24 amateur wine aficionados into three
groups, A, B, and C, of 8 subjects each. Each subject is scheduled for an
individual interview. Unfortunately, one of the subjects of group B and two
of group C fail to show up for their interviews, so the investigator must
make do with samples of unequal size: na = 8, nb = 7, and nc = 6, for a total
of N = 21. The subjects who do show up for their interviews are each asked
to rate the overall quality of each of three wines on a 10-point scale, with
“1” standing at the bottom of the scale and “10” at the top.

As it happens, the three wines are the same for all subjects. The only
difference is in the texture of the interview, which is designed to induce a
relatively high expectation of quality in the members of group A; a
relatively low expectation in the members of group C; and a merely neutral
state, tending in neither the one direction nor the other, for the members
of group B. At the end of the study, each subject’s ratings are averaged
across all three wines, and this average is then taken as the raw measure
for that particular subject. 41/45



Wine Ratings Wine Ranks

Group A Group B Group C Group A Group B Group C

6.4 2.5 1.3 11 2 1
6.8 3.7 4.1 12 3 4
7.2 4.9 4.9 13 5.5 5.5
8.3 5.4 5.2 17 8 7
8.4 5.9 5.5 18 10 9
9.1 8.1 8.2 19 14 15.5
9.4 8.2 20 15.2
9.7 21

nA = 8 nB = 7 nC = 6
TA = 131 TB = 58 TC = 42

MA = 16.4 MB = 8.3 MC = 7.0

H =

[
12

N(N +1)
×∑

T c2

nc

]
−3(N +1)

H =

[
12

21(21+1)
×
(

1312

8
+

582

7
+

422

6

)]
−3(21+1)

H = [0.02597403×2919.696]−66 = 9.836271

H ∼ χ2
d f=k−1 and here the p-value is 0.007312753 so we reject H0; the

observed distribution differs across the groups.
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Kruskal-Wallis on Ranked Data

Cafazzo et al. (2010) observed a group of free-ranging domestic dogs in the
outskirts of Rome. Based on the direction of 1815 observations of
submissive behavior, they were able to place the dogs in a dominance
hierarchy, from most dominant (Merlino) to most submissive (Pisola). Do
male and female dogs differ in submissiveness?
> head(dogs)

Dog Sex Rank

1 Merlino Male 1

2 Gastone Male 2

3 Pippo Male 3

4 Leon Male 4

5 Golia Male 5

6 Lancillotto Male 6

> kruskal.test(Rank ~ Sex, data=dogs)

Kruskal-Wallis rank sum test

data: Rank by Sex

Kruskal-Wallis chi-squared = 4.6095, df = 1, p-value = 0.03179

Given the low p-value we can conclude that male and female dogs differ in
terms of submissive behavior.
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Air Quality

Does airquality vary by month? We have daily readings of the following air
quality values for May 1, 1973 (a Tuesday) to September 30, 1973: Mean
ozone in parts per billion from 1300 to 1500 hours at Roosevelt Island, NY.
shapiro.test() shows May and September data to be non-normal. Levene’s
test shows unequal variances.
> leveneTest(airquality$Ozone ~ factor(airquality$Month), center="mean")

Levene’s Test for Homogeneity of Variance (center = "mean")

Df F value Pr(>F)

group 4 4.1019 0.003874 **

111

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> leveneTest(airquality$Ozone ~ factor(airquality$Month), center="median")

Levene’s Test for Homogeneity of Variance (center = "median")

Df F value Pr(>F)

group 4 3.9558 0.004863 **

111

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The log, square-root, inverse, etc. don’t help. So perhaps we need to run
the Kruskal-Wallis test 44/45



> kruskal.test(Ozone ~ Month, data=airquality)

Kruskal-Wallis rank sum test

data: Ozone by Month

Kruskal-Wallis chi-squared = 29.2666, df = 4, p-value = 6.901e-06

Reject H0; Mean ranks of ozone levels differ across the months.
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