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Simple Linear Regression



Introduction to Regression Analysis

• Regression analysis (a) describes and (b) predicts relationships between one
continuous or categorical dependent variable and one or more continuous
and/or categorical independent variables

• The relationship between y and x is assumed to be linear such that a straight
line y = a+b(x) best �ts the joint distribution of (x,y)

• Recall the equation for a straight line y = mx+ c where c = the intercept, and
m = the slope of the line

• In the regression setting
• a is the intercept (i.e., the value of y when x = 0), and
• b is the slope coe�cient

• The slope coe�cient (b) tells us how much does y change when x increases or
decreases by a unit amount
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The Lion’s Nose

Lion populations can be controlled by many means but trophy hunting is one way to
do it. Knowing the lion’s age helps because removing males older than six years of
age has little impact on the pride’s social structure but killing younger males is more
disruptive. Researchers have shown that the amount of black pigmentation on a
lion’s nose increases with age and so can be used to estimate wild lions’ ages. The
relationship between age and the proportion of black pigmentation on 32 male lions
with known ages is shown below.
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Linear Regression with LionNoses

> lm1 <- lm(age ~ proportion.black, data=LionNoses)

> summary(lm1)

Call:

lm(formula = age ~ proportion.black, data = LionNoses)

Residuals:

Min 1Q Median 3Q Max

-2.5449 -1.1117 -0.5285 0.9635 4.3421

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.8790 0.5688 1.545 0.133

proportion.black 10.6471 1.5095 7.053 7.68e-08 ***

---

Signif. codes:

0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.669 on 30 degrees of freedom

Multiple R-squared: 0.6238, Adjusted R-squared: 0.6113

F-statistic: 49.75 on 1 and 30 DF, p-value: 7.677e-08

Thus y = 0.8790+10.6471(proportion.black)
When proportion.black = 0.20 predicted y = 0.8790+10.6471(0.20) = 3.00842
When proportion.black = 0.21 predicted y = 0.8790+10.6471(0.21) = 3.114891

... as proportion.black increased by 0.01 we expect y to increase by 0.106471
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In the dataset we actually have lions with 0.20 and 0.21 proportion of their noses
black. How old were these lions? The former was 1.9 years old and the latter was 3.6
So the regression equation is making a prediction error because predicted ages were
3.00 and 3.11, respectively!
Unfortunately, with real-world data, you will always have prediction errors; how large
or small these will be depends upon how closely and linearly related are x and y, and
the quality of your sample
These errors are basically the di�erence between actual y values and predicted ŷ
values ... e = (y− ŷ)
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The Method of Ordinary Least Squares

OLS looks to minimize ∑(ei)
2 = ∑(yi− ŷi)

2

But what is ∑(yi− ŷi)
2? The Sum of Squared Errors (i.e., SSE)

The estimated intercept and slope are denoted by a ˆsymbol and the estimated
regression equation is itself written as ŷ = â+ b̂(x)

Intercept and the slope are estimated as follows: b̂ =
∑(xi− x̄)(yi− ȳ)

∑(xi− x̄)2 where x̄ is the

sample mean of x and ȳ is the sample mean of y, the numerator is the covariance of x
and y, and the denominator is the Sum of Squares of x

Once we have b̂ we can calculate â via ȳ = â+ b̂(x̄), i..e, â = ȳ− b̂(x̄)
> lm1 <- lm(age ~ proportion.black, data=LionNoses)

> summary(lm1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.8790 0.5688 1.545 0.133

proportion.black 10.6471 1.5095 7.053 7.68e-08 ***

---

Signif. codes:

0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.669 on 30 degrees of freedom

Multiple R-squared: 0.6238, Adjusted R-squared: 0.6113

F-statistic: 49.75 on 1 and 30 DF, p-value: 7.677e-08
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Breaking Apart the Analysis

• A perfect �t would occur if every yi were predicted perfectly
• But this rarely occurs. Instead, some or all yi will 6= ŷi

• êi = yi− ŷi is thus called the residual
• Summing the squares of all prediction errors yields ...
the Sum of Squares due to Error (SSresidual) = ∑(yi− ŷi)

2

• What if we calculate yi− ȳ for all i?
• Then we have the Sum of Squares Total (SStotal) = ∑(yi− ȳ)2

• Sum of Squares due to Regression (SSregression) = ∑(ŷi− ȳ)2

• SStotal = SSregression +SSresidual

• Perfect �t occurs when SSresidual = 0, and thus SStotal = SSregression

• Abysmal �t occurs when SSregression = 0, and thus SStotal = SSresidual

• R2 =
SSregression

SStotal
thus yields a measure of the “goodness of �t”

1 0≤ R2 ≤ 1

2 R2→ 1 indicates better �t
3 R2→ 0 indicates poorer �t
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Calculating other elements of the regression equation

• Let us calculate the variance of the residuals Var(ei) =
∑(ei− ē)2

n−2
• We know, however, that ē = 0

• Therefore, Var(ei) =
∑(ei)

2

n−2
=

∑(yi− ŷ)2

n−2
=

SSresiduals

n−2
= MSresidual

• But this is Mean Squared Error (i.e., prediction errors in squared units)
• So if we take √MSresidual we get average prediction errors

• Now, the standard error of b̂ = s.e.(b̂) =
√

MSresidual

∑(xi− x̄)2

• Is this estimate of b signi�cant?
Proportion black has no impact on age (i.e., H0 : β0 = 0)
Proportion black has an impact on age (i.e., HA : β0 6= 0)

• The test statistic is tb̂ =
b̂−β0

s.e.(b̂)
=

b̂−0
s.e.(b̂)

=
b̂

s.e.(b̂)

• We can also test H0 : a = 0; H1 : a 6= 0 via tâ =
â

s.e.(â)
but this is usually of little

substantive interest
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Identifying the Elements in R
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.8790 0.5688 1.545 0.133

proportion.black 10.6471 1.5095 7.053 7.68e-08 ***

---

Signif. codes:

0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.669 on 30 degrees of freedom

Multiple R-squared: 0.6238, Adjusted R-squared: 0.6113

F-statistic: 49.75 on 1 and 30 DF, p-value: 7.677e-08

The Estimate of the (Intercept) is â = 0.8790 and the Estimate of the slope of
proportion.black is b̂ = 10.6471
The standard errors are given for both â and b̂, and so also the test statistic for each
(i.e., the t value)
P− value is also listed for â and b̂ but as Pr(> |t|) and with symbols ... ∗ means the
P− value < 0.05; ∗∗ means the P− value < 0.01; ∗∗∗ means the P− value < 0.001

R2 =
SSregression

SStotal
is listed as the Multiple R-squared

Adjusted R-squared= 1− (1−R2)
n−1

n− k−1
where k is no. of independent variables

MSresidual is the Residual standard error and is typically used as a measure of model
�t (it tells us how far o� the true y we would be if we used our model to predict y)
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Population versus Sample Regression Function

Population Regression Function: y = α +β (x)+ ε

Sample Regression Function: y = a+b(x)+ e

See the plot below: Range of y values for each �xed value of xi
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Galton’s Data

These are data from a famous 1885 study of Francis Galton exploring the relationship
between the heights of children and the height of their parents. The variables are the
height of the adult child and the midparent height, de�ned as the average of the
height of the father and 1.08 times the height of the mother. The units are inches.
The number of cases is 928, representing 928 children and their 205 parents.

12/54



Four Sample Regression Functions
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The Estimates ...
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.94153 2.81088 8.517 <2e-16 ***

Galton$parent 0.64629 0.04114 15.711 <2e-16 ***

---

Signif. codes:

0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Sample 1

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 27.9453 11.1313 2.511 0.016430 *

sample1$parent 0.5888 0.1644 3.582 0.000955 ***

Sample 2

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.01339 9.62646 0.001 0.999

sample2$parent 1.00804 0.14094 7.152 1.53e-08 ***

Sample 3

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 64.82437 16.01798 4.047 0.000246 ***

sample3$parent 0.04915 0.23491 0.209 0.835393

Sample 4

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.7532 13.3912 -0.430 0.67

sample4$parent 1.0832 0.1958 5.532 2.49e-06 ***

14/54



Con�dence & Prediction Intervals



Estimation and Prediction

• ŷi is a point estimate for yi

• But point estimates of predicted values tell us nothing about their precision
• Con�dence intervals and Prediction intervals, however, do
• Con�dence interval: Interval estimate of mean value of y for speci�c value of x

• Prediction interval: Interval estimate of predicted value of y for speci�c value of
x

• xp = speci�c value of x; yp = speci�c value of y for x = xp

• E(yp) = expected value of y given x = xp is ŷp = â+ b̂(xp)

• var(ŷp) = s2
ŷp

= s2
[

1
n
+

(xp− x̄)2

∑(xi− x̄)2

]
; s(ŷp) = sŷp = s

√[
1
n
+

(xp− x̄)2

∑(xi− x̄)2

]
• Con�dence Interval: ŷp± tα/2sŷp
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...

• In Con�dence Intervals, we could be wrong on two counts – b0;b1

• But, if we want to predict y for some x value not in the sample, we could be
wrong on three counts – b0;b1;e

• So we adjust Variance as s2
ind = s2 + s2

ŷp

• s2
ind = s2 + s2

[
1
n
+

(xp− x̄)2

∑(xi− x̄)2

]
= s2

[
1+

1
n
+

(xp− x̄)2

∑(xi− x̄)2

]

• sind = s

√[
1+

1
n
+

(xp− x̄)2

∑(xi− x̄)2

]
• Prediction Interval: ŷp± tα/2sind
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Con�dence and Prediction Intervals for LionNoses
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Predicting Out of Sample Values

> summary(LionNoses)

age proportion.black

Min. : 1.100 Min. :0.1000

1st Qu.: 2.175 1st Qu.:0.1650

Median : 3.500 Median :0.2650

Mean : 4.309 Mean :0.3222

3rd Qu.: 5.850 3rd Qu.:0.4325

Max. :13.100 Max. :0.7900

> newdata <- data.frame(proportion.black=c(0.01, 0.05, 0.85, 0.90, 0.95, 0.99))

> predict(lm1, newdata, interval="predict")

fit lwr upr

1 0.9854774 -2.606758 4.577713

2 1.4113622 -2.149819 4.972543

3 9.9290577 6.104725 13.753390

4 10.4614137 6.568998 14.353829

5 10.9937697 7.028446 14.959094

6 11.4196545 7.392705 15.446604
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Multiple Linear Regression



Multiple Linear Regression

Multiple Regression Analysis refers to models with more than one independent
variable as in, for example, y = a+b1(x1)+b2(x2)+b3(x3)+ e

Basic interpretation remains the same except the slopes b1,b2,b3, etc. are referred to
as the partial slope coe�cients (because no single variable explains the slope of the
regression line on its own)
Allows for all categorical variables, all continuous variables, or a mix of the two types
The data used below re�ect the number of deaths in London from 1st-15th Dec 1952
due to air pollution. Two independent variables are usable – atmospheric smoke (in
mg/cu.m), and SO2 (atmospheric sulphur dioxide in parts/million). The dependent
variable will be the number of deaths.
Call:

lm(formula = deaths ~ smoke + SO2, data = SO2)

Residuals:

Min 1Q Median 3Q Max

-100.717 -20.689 -3.298 15.148 114.931

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 89.51 25.08 3.569 0.003858 **

smoke -220.32 58.14 -3.789 0.002579 **

SO2 1051.82 212.60 4.947 0.000338 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 52.96 on 12 degrees of freedom

Multiple R-squared: 0.859, Adjusted R-squared: 0.8355

F-statistic: 36.57 on 2 and 12 DF, p-value: 7.844e-06
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Understanding the Estimates

y = 89.51−220.32(smoke)+1051.82(SO2)

You see the (Intercept) plus partial slope coe�cients for smoke and SO2

The (Intercept) is interpreted as follows: It is the predicted number of deaths when
smoke = 0 and SO2 = 0

The partial slope coe�cient on smoke is −220.32 and indicates that holding all else
constant (which in this case means holding SO2 constant) every unit increase (i.e., an
increase of 1) in smoke decreases the number of deaths by about 220

The partial slope coe�cient on SO2 is 1051.82 and indicates that holding all else
constant (which in this case means holding smoke constant) every unit increase in
SO2 increases the number of deaths by about 1052

The adjusted R2 is 0.8355, indicating that about 83.55% of the variation in the number
of deaths can be jointly explained by smoke and SO2

The Residual standard error is 52.96, indicating that if we try to predict the number of
deaths using this regression model, on average our prediction would be o� the TRUE
number of deaths by about 53 · · · that is, 53 more than really occur or 53 less than
really occur
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Predicting the Number of Deaths

We can calculate predicted number of deaths by using the estimated regression
model but in order to do so we will need to specify values for smoke and for SO2

One good way to show how the model works is by choosing speci�c values of the
independent variables when generating predictions. Most commonly one would pick
the minimum, �rst quartile, mean (or median), third quartile, and the maximum
values of each independent variable

Below we do this:
> summary(SO2)

day deaths smoke SO2

Min. : 1.0 Min. :112.0 Min. :0.290 Min. :0.090

1st Qu.: 4.5 1st Qu.:169.5 1st Qu.:0.320 1st Qu.:0.160

Median : 8.0 Median :236.0 Median :0.500 Median :0.230

Mean : 8.0 Mean :261.5 Mean :1.406 Mean :0.458

3rd Qu.:11.5 3rd Qu.:284.0 3rd Qu.:1.930 3rd Qu.:0.610

Max. :15.0 Max. :518.0 Max. :4.460 Max. :1.340

> new.data = data.frame(smoke = c(0.290, 0.320, 0.500, 1.930, 4.460), SO2 = c(0.090, 0.160, 0.230, 0.610, 1.340))

> yhat = predict(lm.SO2b, newdata=new.data, interval="conf")

> yhat

fit lwr upr

1 120.2802 71.98191 168.5785

2 187.2976 150.41784 224.1774

3 221.2664 185.58679 256.9460

4 305.8928 273.95491 337.8307

5 516.2981 443.57961 589.0167
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· · ·
> new.data = data.frame(smoke = c(0.290, 0.320, 0.500, 1.930, 4.460), SO2 = c(0.090, 0.160, 0.230, 0.610, 1.340))

> yhat = predict(lm.SO2b, newdata=new.data, interval="conf")

> yhat

fit lwr upr

1 120.2802 71.98191 168.5785

2 187.2976 150.41784 224.1774

3 221.2664 185.58679 256.9460

4 305.8928 273.95491 337.8307

5 516.2981 443.57961 589.0167

Note that row 5 is for smoke = 4.460 and SO2 = 1.340 – i.e., both at their maximum
row 3 is when both are at their in-sample median values
But you can tweak these combinations as you want to so long as you do not step
outside the in-sample values of your independent variables
For example, let us see how SO2 impacts deaths when it is at its maximum and
smoke is at its minimum. We can then reverse this speci�cation
> new.data = data.frame(smoke = 0.290, SO2 = 1.340)

> yhat = predict(lm.SO2b, newdata=new.data, interval="conf")

> yhat

fit lwr upr

1 1435.051 885.6235 1984.478

> new.data = data.frame(smoke = 4.460, SO2 = 0.090)

> yhat = predict(lm.SO2b, newdata=new.data, interval="conf")

> yhat

fit lwr upr

1 -798.4724 -1355.147 -241.798

Note: The latter predictions make no sense since you cannot have negative deaths!!
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Plotting the Regression Line

An easy way to demonstrate the results is by plotting the predicted values of the
dependent variable according to values of the independent variables via visreg
visreg(lm.SO2b, "smoke", by="SO2")

SO2 is being held constant at the 10th, 50th, and 90th percentiles
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Categorical Independent
Variables



Treatments as Categorical Independent Variables

• Thus far we have looked at x as a continuous independent variable but what if
the independent variable is categorical, say a “treatment” with two or more
levels?

• For example, recall Chapter 15’s LodgepolePines data where the response
variable was the mean cone size recorded in 16 sites that fell into three
mutually exclusive categories – Island without squirrels; Island with squirrels;
and Mainland with squirrels

• We can easily �t a regression model to these data as well, but with some
modi�cations in terms of how the treatment indicator enters the model
We may want to specify the model as
y = a+b1(Island.present)+b2(Mainland.present)+b3(Island.absent)
... but this would be a problem because in the regression setting the intercept
represents the expected value of y when x = 0. Here, that would imply a site
that is not an Island with squirrels present, nor is it the Mainland with squirrels
present, nor an Island with squirrels absent ... i.e., a site that does not exist in
the study!!
So we always exclude one treatment condition (typically the one with largest
n j) and use it as the reference category
The model then might be y = a+b1(Island.present)+b2(Mainland.present)
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y = a+b1(Island.present)+b2(Mainland.present)
If the site is Island.absent, then the equation becomes
y = a+b1(Island.present = 0)+b2(Mainland.present = 0) = a
If the site is Island.present, then the equation becomes
y = a+b1(Island.present = 1)+b2(Mainland.present = 0) = a+b1

If the site is Mainland.present, then the equation becomes
y = a+b1(Island.present = 0)+b2(Mainland.present = 1) = a+b2

... so expected mean conemass is a for Island.absent, a+b1 for Island.present, and
a+b2 for Mainland.present
Call:

lm(formula = conemass ~ habitat, data = LodgepolePines)

Residuals:

Min 1Q Median 3Q Max

-0.780 -0.405 -0.040 0.505 0.720

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.9000 0.2212 40.238 4.97e-15 ***

habitatisland present -2.8200 0.3281 -8.596 1.01e-06 ***

habitatmainland present -2.7800 0.3281 -8.474 1.18e-06 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.5418 on 13 degrees of freedom

Multiple R-squared: 0.8851, Adjusted R-squared: 0.8675

F-statistic: 50.09 on 2 and 13 DF, p-value: 7.787e-07
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.9000 0.2212 40.238 4.97e-15 ***

habitatisland present -2.8200 0.3281 -8.596 1.01e-06 ***

habitatmainland present -2.7800 0.3281 -8.474 1.18e-06 ***

mean cone mass is predicted to be 8.90 for Island.absent, 8.90−2.82 = 6.08 for
Island.present, and 8.90−2.78 = 6.12 for Mainland.present

Now look at the mean cone mass for each habitat type (see below)
> with(pines, tapply(conemass, habitat, mean))

island.absent island.present mainland.present

8.90 6.08 6.12

Note: 8.90 - 6.08 = -2.82 ... average cone mass is lower for island.present than that for
island.absent by 2.82
Note: 8.90 - 6.12 = -2.78 ... average cone mass is lower for mainland.present than that
for island.absent by 2.78
So the regression estimates, the partial slope coe�cients here, give you the
di�erence between each group represented by the categorical variables
The intercept is the mean for the reference group (here Island.absent)
In general, with m categories of the variable you will see estimates for m−1

categories
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Two Categorical Independent Variables

Recall the �ies data we used for two-factor ANOVA

The dependent variable was lifespan (in days), and the two independent variables
were (1) fertility (fertile vs. sterile), and (2) treatment (low-cost vs. high-cost)

The linear model to be estimated is li f espan = a+b1( f ertility)+b2(treatment)+ e

> lm.f = lm(lifespanDays ~ treatment + fertility, data=flies)

> summary(lm.f)

Call:

lm(formula = lifespanDays ~ treatment + fertility, data = flies)

Residuals:

Min 1Q Median 3Q Max

-30.3061 -4.3290 0.8528 4.8528 25.8757

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.1472 0.4926 46.988 < 2e-16 ***

treatmentlow-cost 6.9771 0.5684 12.276 < 2e-16 ***

fertilitysterile 2.1819 0.5684 3.839 0.000133 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 8.246 on 839 degrees of freedom

Multiple R-squared: 0.1649, Adjusted R-squared: 0.1629

F-statistic: 82.83 on 2 and 839 DF, p-value: < 2.2e-16
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.1472 0.4926 46.988 < 2e-16 ***

treatmentlow-cost 6.9771 0.5684 12.276 < 2e-16 ***

fertilitysterile 2.1819 0.5684 3.839 0.000133 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 8.246 on 839 degrees of freedom

Multiple R-squared: 0.1649, Adjusted R-squared: 0.1629

F-statistic: 82.83 on 2 and 839 DF, p-value: < 2.2e-16

R will use the �rst label of the factor as the reference category (high-cost comes
before low-cost and fertile comes before sterile) If we were interested in the
high-cost + fertile group, both of these partial slopes (treatmentlow-cost and sterile)
would be dropped, which would make the (Intercept) the estimated lifespan for the
high-cost + fertile group (the reference group now)
If we wanted the estimated lifespan for the low-cost + fertile group then the partial
slope on fertilitysterile would be dropped

If we wanted the the estimated lifespan for the high-cost + sterile group then the
partial slope on treatmentlow-cost would be dropped
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Predicting the mean lifespan for particular groups ...
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.1472 0.4926 46.988 < 2e-16 ***

treatmentlow-cost 6.9771 0.5684 12.276 < 2e-16 ***

fertilitysterile 2.1819 0.5684 3.839 0.000133 ***

for high-cost + fertile group: = â = 23.1472
for high-cost + sterile group: = â+ b̂2 = 23.1472+2.1819 = 25.3291
for low-cost + fertile group: = â+ b̂1 = 23.1472+6.9771 = 30.1243
for low-cost + sterile group: = â+ b̂1 + b̂2 = 23.1472+6.9771+2.1819 = 32.3062
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Mixing Variable Types: Mole Rats

Let us now �t a model with two independent variables – one continuous and one
categorical

Mole rats are the only known mammals with distinct social castes. A single queen
and a small number of males are the only reproducing individuals in a colony.
Remaining individuals, called workers, gather food, defend the colony, care for the
young, and maintain burrows. Recently, it was discovered that there might be two
worker castes in the Damaraland mole rat. “Frequent workers” do almost all of the
work in the colony, whereas ”infrequent workers” do little work except on rare
occasions a�er rains, when they extend the burrow system. To assess the
physiological di�erences between the two types of workers, researchers compared
daily energy expenditures of wild mole rats during a dry season. Energy expenditure
appeared to vary with body mass in both groups but infrequent workers were heavier
than frequent workers. How di�erent is mean daily energy expenditure between the
two groups when adjusted for di�erences in body mass?
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We will �t the following model:

log(energy) = a+b1(log(mass))+b2(caste)+ e

> lm.r = lm(lnEnergy ~ lnMass + caste, data=rats)

> summary(lm.r)

Call:

lm(formula = lnEnergy ~ lnMass + caste, data = rats)

Residuals:

Min 1Q Median 3Q Max

-0.73388 -0.19371 0.01317 0.17578 0.47673

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.09687 0.94230 -0.103 0.9188

lnMass 0.89282 0.19303 4.625 5.89e-05 ***

casteworker 0.39334 0.14611 2.692 0.0112 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.2966 on 32 degrees of freedom

Multiple R-squared: 0.409, Adjusted R-squared: 0.3721

F-statistic: 11.07 on 2 and 32 DF, p-value: 0.0002213

Note: both lnMass and caste are statistically signi�cant
The (Intercept) is predicted lnEnergy when caste=lazy and lnMass = 0 ... makes no
sense for lnMass but that is typically what happens with intercepts
Predicted lnEnergy for a worker is =−0.09687+0.82928(lnMass)+0.39334 and we’ll
have to set a value of lnMass to calculate the �nal result
Typically one would calculate the predicted value of the dependent variable by
picking substantively interesting values of the independent variable. In our case, say
we use the �ve-number summary – Min., Q1, Median, Q3, and Max.
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> summary(rats$lnEnergy)
Min. 1st Qu. Median Mean 3rd Qu. Max.

3.555 3.902 4.190 4.193 4.489 5.043

We’ll create a new data-frame that contains these values and generate predictions,
one set for workers and the other for lazy:
> new.data.a = data.frame(lnMass=c(3.850, 4.248, 4.511, 4.844, 5.263 ), caste="worker")

> new.data.b = data.frame(lnMass=c(3.850, 4.248, 4.511, 4.844, 5.263 ), caste="lazy")

> predicted.lnEnergy.w = predict(lm.r, newdata=new.data.a)

> predicted.lnEnergy.l = predict(lm.r, newdata=new.data.b)

> predicted.lnEnergy.w

1 2 3 4 5

3.733812 4.089153 4.323963 4.621270 4.995360

> predicted.lnEnergy.l

1 2 3 4 5

3.340470 3.695810 3.930621 4.227928 4.602018

Notice the di�erence between the predictions at each value of lnMass we speci�ed:
> predicted.lnEnergy.w - predicted.lnEnergy.l

1 2 3 4 5

0.3933424 0.3933424 0.3933424 0.3933424 0.3933424

... it is the partial slope coe�cient for caste
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If we plot the two sets of predictions you’ll see this constant di�erence showing up
as an intercept-shi� (upwards for workers)
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Plotting with visreg and using in-sample values of lnMass
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Plotting with visreg and using in-sample values of lnMass but overlaying the two
panels
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The F test

Say we have a model such as the following: y = a+b1(x1)+b2(x2)

How can we test that both b1 and b2 are not simultaneously zero?

... via the F test where F =

SSR
k−1
SSE
n− k

where k = number of independent variables, SSR is

Sum of Squares due to the Regression, and SSE is Sum of Squares due to the Errors

Here H0 : b1 = b2 = . . .= bk = 0 and HA : Not all bi are simultaneously equal to 0

R automatically gives you this F statistic and the associated p-value

If the p-value ≤ 0.05 we can reject H0
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> lm.SO2b = lm(deaths ~ smoke + SO2, data=SO2)

> summary(lm.SO2b)

Call:

lm(formula = deaths ~ smoke + SO2, data = SO2)

Residuals:

Min 1Q Median 3Q Max

-100.717 -20.689 -3.298 15.148 114.931

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 89.51 25.08 3.569 0.003858 **

smoke -220.32 58.14 -3.789 0.002579 **

SO2 1051.82 212.60 4.947 0.000338 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 52.96 on 12 degrees of freedom

Multiple R-squared: 0.859, Adjusted R-squared: 0.8355

F-statistic: 36.57 on 2 and 12 DF, p-value: 7.844e-06

Note: F-statistic: 36.57 on 2 and 12 DF, p-value: 7.844e-06
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The Marginal Contribution of an Independent Variable

Typically you will have two or more independent variables you want to test in a
regression

This o�en raises the question of whether adding one or more variables really adds
much in terms of improving the �t of the model to the data

The F test can be used here as well to decide if the “new” model is an improvement
over the “old” model

F =

SSRnew−SSRold

number of new independent variables
SSEnew

n− knew−1

This is the same as running F =
R2

new−R2
old/number of new independent variables

(1−R2
new)/n− knew−1

Let us see this test in action with respect to the SO2 data
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> lm.SO2a = lm(deaths ~ smoke, data=SO2)

> summary(lm.SO2a)

Call:

lm(formula = deaths ~ smoke, data = SO2)

Residuals:

Min 1Q Median 3Q Max

-144.15 -73.33 24.39 54.55 180.39

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 171.82 31.43 5.466 0.000108 ***

smoke 63.76 15.31 4.164 0.001112 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 88.71 on 13 degrees of freedom

Multiple R-squared: 0.5715, Adjusted R-squared: 0.5386

F-statistic: 17.34 on 1 and 13 DF, p-value: 0.001112

> lm.SO2b = lm(deaths ~ smoke + SO2, data=SO2)

> summary(lm.SO2b)

Call:

lm(formula = deaths ~ smoke + SO2, data = SO2)

Residuals:

Min 1Q Median 3Q Max

-100.717 -20.689 -3.298 15.148 114.931

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 89.51 25.08 3.569 0.003858 **

smoke -220.32 58.14 -3.789 0.002579 **

SO2 1051.82 212.60 4.947 0.000338 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 52.96 on 12 degrees of freedom

Multiple R-squared: 0.859, Adjusted R-squared: 0.8355

F-statistic: 36.57 on 2 and 12 DF, p-value: 7.844e-06
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R2
lm.SO2b = 0.8590 and R2

lm.SO2a = 0.5715

Number of new independent variables = 1 and knew = 2

Therefore, F =
(0.8590−0.5715)/1
(1−0.8590)/(15−3)

≈ 24.46809, which turns out to have a very low
p-value

Conclusion? SO2 should be added to the model

In R we can compare such nested models via the anova() command ...
> anova(lm.SO2a, lm.SO2b)

Analysis of Variance Table

Model 1: deaths ~ smoke

Model 2: deaths ~ smoke + SO2

Res.Df RSS Df Sum of Sq F Pr(>F)

1 13 102302

2 12 33654 1 68648 24.478 0.0003378 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Before we move on, see how the e�ect of smoke di�ers in the two models
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Some Cautions

• Never extrapolate beyond the in-sample values of the independent variables
• Always focus on the adjusted R2 because it penalizes the R2 for the number of
independent variables being used. As you increase the number of independent
variables the R2 will always increase even if the new variables are not
statistically signi�cant

• Never look to maximize R2 because even the worst models can yield very high
R2 values even when no independent variable is statistically signi�cant

• Never ignore the Residual standard error because that is a good indicator of
average prediction error one could make if one used the model

• Always test your regression model against new data ... how well it performs will
be determined by how well it actually predicts the actual dependent variable
values in the new sample

• Test for interactions (if theory or suspicions suggest as much)
• Remember Occam’s Razor: “when you have two competing theories that make
exactly the same predictions, the simpler one is better”
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Assumptions of Linear
Regression



Core Assumptions of Simple Linear Regression

1 The data you have map well to the research question you are wrestling with

2 The regression is linear in parameters ... the slope b appears with a power of 1.
Thus y = a+b

(
x2) is still a linear regression model, as is y = a+b

(
1
x

)
, etc.

3 Each value of x is associated with a population of y values, and the mean of
these y values falls on the population regression line (i.e., E(ei|xi) = 0)

4 For each value of x the population of y values is normally distributed

5 For each x value the sampled y values are a random draw from the
corresponding population of y values

6 The variance of the y values is constant across all x values ... This is known as
heteroscedasticity

7 You have no outliers that signi�cantly in�uence the regression line

8 No two or more variables are highly correlated ... This is known as
multicollinearity

The car library has several useful diagnostics to identify violations of these (and
more) regression assumptions
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Testing Assumptions

• ei = yi− ŷi is the residual, aka the prediction error for each observation i

• ordinary residuals: ei = yi− ŷi, where i = 1,2,3, . . . ,n

• Residuals are the basis of most diagnostic methods because if the regression
model is correct then ordinary residuals should be strictly random with mean
and variance given by: E(ei) = 0; Var(ei) = σ2(1−hii)

• hii is the leverage or hat-value, and indicates how much of an impact a
particular observation has on the regression line ... a large hii is a sign of
an unusual xi value; observations close to the center of the regression
space will have small hii

• Think of hii as follows. Assume for a given value xi you change yi by a little
bit and then re-estimate the regression. This change may not really
modify the original regression, in which case the original ŷi and the new ŷi

will be the same. On the other hand, if the new ŷi is now di�erent from its
original value, well then this particular yi is shaping the regression line a
good bit. Thus hii =

δ ŷi

δyi
• If plots of residuals against ŷ and the x variable show some non-randomness,
this is a sign that one or more assumptions is being violated

• In the residualPlots() that follow a �at red line = all okay; any marked
curvilinear pattern suggests something is wrong 43/54



LionNoses Revisited
Call:

lm(formula = age ~ proportion.black, data = LionNoses)

Residuals:

Min 1Q Median 3Q Max

-2.5449 -1.1117 -0.5285 0.9635 4.3421

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.8790 0.5688 1.545 0.133

proportion.black 10.6471 1.5095 7.053 7.68e-08 ***

---

Signif. codes:

0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.669 on 30 degrees of freedom

Multiple R-squared: 0.6238, Adjusted R-squared: 0.6113

F-statistic: 49.75 on 1 and 30 DF, p-value: 7.677e-08
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Outliers and Studentized Residuals

• If an observation is having an unusually large e�ect on the regression model we
should be able to model it via yi = a+b(xi)+ γ(di), where di = 1 for observation i
and di = 0 for all other observations

• Studentized residuals essentially perform such a test
Studentized Residual: eτi =

ei

σ̂−i
√

1−hii
; note that σ̂−i is the estimated variance

of the residuals when observation i has been excluded and the regression
model �t again. This is akin to the following:

1 Run the full regression model with all observations and save the residuals
2 Now exclude each observation – one at a time – and re�t the model,
saving the residuals at each run

3 Calculate the ratio of the full model residual of observation i to the
standard deviation of the residuals from the regression excluding
observation i

4 This ratio follows the t distribution with n− k−2 degrees of freedom
5 Multiple simultaneous tests so we use Bonferroni adjustment of the
P-value
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Note that two observations with the largest absolute Studentized residuals are
�agged – observations 27 and 30, but both are within the 95% con�dence interval so
we may have no problem here with outliers
> outlierTest(lm1)

No Studentized residuals with Bonferonni p < 0.05

Largest |rstudent|:

rstudent unadjusted p-value Bonferonni p

30 3.302066 0.0025533 0.081704

The test also shows observation 30 to not be an outlier but we aren’t done yet!
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Leverage

• High Leverage: Observations that are relatively far from the center of the
regression space may have greater in�uence on the regression model

• An observation’s in�uence is a function of two factors: (1) leverage – how much
the observation’s xi value di�ers from x̄ and (2) Cook’s Distance – the di�erence
between ŷi for the observation and yi

• in�uenceIndexPlots and in�uencePlots are used to see the leverage and
in�uence of each observation

• Focus on the second plot on the following slide: What you see is observation 30
�agged with the largest bubble, indicating that if this observation is removed
from the sample the estimated slope will change appreciably because
observation 30 is exerting a relatively large in�uence on the regression line
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Re�tting the Model sans Obs. #30
> lm1.no30 <- update(lm1, subset=-30)

> summary(lm1.no30)

Call:

lm(formula = age ~ proportion.black, data = LionNoses, subset = -30)

Residuals:

Min 1Q Median 3Q Max

-2.0522 -0.9810 -0.4072 0.6353 3.4973

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.2938 0.5089 2.542 0.0166 *

proportion.black 8.8498 1.4175 6.243 8.19e-07 ***

---

Signif. codes:

0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.447 on 29 degrees of freedom

Multiple R-squared: 0.5734, Adjusted R-squared: 0.5587

F-statistic: 38.98 on 1 and 29 DF, p-value: 8.191e-07

> compareCoefs(lm1, lm1.no30)

Call:

1:"lm(formula = age ~ proportion.black, data = LionNoses)"

2:c("lm(formula = age ~ proportion.black, data = LionNoses, ",

" subset = -30)")

Est. 1 SE 1 Est. 2 SE 2

(Intercept) 0.879 0.569 1.294 0.509

proportion.black 10.647 1.510 8.850 1.418

Note how much both the intercept and the slope change once observation 30 is
removed
Why is this observation problematic? See the data ...
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Logit Models



Categorical Dependent Variables

Thus far y has been a numeric variable but what if y = 1 if a patient (or a species)
survived and y = 0 if a patient (or the species) did not survive?
Let us make the example concrete by way of a speci�c dataset: SAheart1

Let y = 1 if the male has coronary heart disease and y = 0 otherwise
Let x be the male’s age (in years)
Question: Does a man’s age in�uence the probability of coronary heart disease?
Let πi be the probability that yi = 1 and thus the probability that yi = 0 must be 1−π

Maybe we can just �t a linear regression model πi = a+b(age)?
Call:

lm(formula = chd ~ age, data = SAheart)

Residuals:

Min 1Q Median 3Q Max

-0.6039 -0.3729 -0.1418 0.4690 0.9676

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.17434 0.06380 -2.733 0.00653 **

age 0.01216 0.00141 8.621 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.4424 on 460 degrees of freedom

Multiple R-squared: 0.1391, Adjusted R-squared: 0.1372

F-statistic: 74.33 on 1 and 460 DF, p-value: < 2.2e-16
1These data are in the ElemStatLearn library
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What are some of the things that strike you as odd?
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· · ·
Call:

glm(formula = chd ~ age, family = binomial(link = "logit"), data = SAheart)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.4321 -0.9215 -0.5392 1.0952 2.2433

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.521710 0.416031 -8.465 < 2e-16 ***

age 0.064108 0.008532 7.513 5.76e-14 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Call:

glm(formula = chd ~ age + sbp + tobacco + famhist, family = binomial(link = "logit"),

data = SAheart)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.8469 -0.8783 -0.4697 0.9668 2.4044

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.312010 0.783259 -5.505 3.69e-08 ***

age 0.045700 0.009861 4.634 3.58e-06 ***

sbp 0.005946 0.005497 1.082 0.27941

tobacco 0.082580 0.025821 3.198 0.00138 **

famhistPresent 0.982556 0.220512 4.456 8.36e-06 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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